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Abstract 

Current  passive-microwave  rain-retrieval  methods  are  largely  based on databases  built  off-line  using  cloud  models.  Because 

the  vertical  distribution of hydrometeors  within  the  cloud  has  a  large  impact on  upwelling  brightness  temperatures ([6],[7]), a 

forward  radiative  transfer  model  can  associate  microwave  radiances  with  different  rain  scenarios.  Then,  to  estimate  the  rain  from 

measured  brightness  temperatures,  one looks for  the  rain  scenarios in the  database  whose  associated  radiances  are  closest  to  the 

measurements. To understand the uncertainties  in this process, we analyze  the  marginal  and joint distributions of the  radiances 

observed by the  Tropical  Rainfall  Measuring  Mission (TRMM) satellite's  passive  microwave  imager,  and  of  those  in  the  databases 

used  in the TR" passive  rain  retrieval. We also  calculate  the  covariances of  the  rain  profiles  and  brightness  temperatures  in  the 

TRMM passive-microwave  database  and  derive  a  simple  parametric  model  for  the  conditional  variance,  given  measured  radiances. 

These  results are used  to  characterize  the  uncertainty  inherent  in  the  passive-microwave  retrieval. 
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I. INTRODUCTION 

M 'OST instantaneous  passive  microwave  rain  retrieval  algorithms  currently  implemented  use  a  cloud 

database  constructed  off-line.  The  database  associates  calculated  microwave  brightness  temperatures 

to sample  rain  events  representing  those  that  are  expected to produce  the  eventual  measurements.  Once  the 

database is constructed,  one  processes  each set of instantaneous  measurements by  searching  the  database  for 

those  scenarios  whose  associated  radiances  are  closest to the  measurements. The details of the  search  and 

eventual  estimation  procedures  differ  from  one  retrieval  algorithm to the  other,  but  the  general  principle is 

the  same. In the case of  the  Tropical  Rainfall  Measuring  Mission's  Microwave  Imager  (TMI),  the  passive- 

microwave  instantaneous  retrieval  algorithm  uses  a  large  database  which was constructed  using  various  cloud 

models  simulations.  Radiative  transfer  calculations  followed by the  approriate  filters  were  used  to  associate 

to  each  simulated  rain  event  (itself  consisting of surface  wind  and  temperature,  and  relative  humidity  and 

hydrometeor  profiles)  the  brightness  temperatures  which  one  would  expect  the  TMI's  10.7  GHz H- and V- 

pol,  19.3  GHz  H-  and  V-pol, 22.2 GHz  V-pol, 37 GHz  H-  and  V-pol,  and 85.5 GHZ  H-  and  V-pol  channels  to 

measure. 
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- Given  a set of measured  radiances,  one  hardly  ever  expects  to find  in  one's  database  exactly  matching 

calculated  brightness  temperatures.  It  is  therefore  important  to  be  able  to  estimate  the  "spread" of the  closest 

near-matches  that  one  does  find. To quantify  this  uncertainty, we start by studying  the joint behavior of 

the  brightness  temperatures  and of the  rain  in  the  vertically  layered  atmosphere. The results  are  used  to 

quantify  the  conditional  variance  of  the  estimated  rain  given  a  set of  microwave radiances.  They  are  also  used 

to compute  the  conditional  covariance of the  brightness  temperatures  given  the  rain, as knowledge of this 

covariance is crucial  to  those  retrieval  algorithms  such  as  the  currently  implemented  TMI's ([2]), which  rely 

on  Bayes's  re-formulation of the  desired  probability p ( 2 l f b )  for  the  rain 2 given  brightness  temperatures pb 

in  terms of the  more  readily  computable  probability p (  T'IR) for  the  brightness  temperatures  given  the  rain : 
- b - .  

~(21%) = p(%la) * Pprior(2) (1) 

The  main  obstacle to conducting  these  studies is the  large  number of variables  one  has to account  for. 

In  section II we  begin  by studying  the  vertically  stratified  rain by itself,  in  order to derive an economical 

representation of the  rain  profiles.  In  section III we study  the  brightness  temperatures  and  derive  expressions 

for  the  conditional  covariances  on  both  sides of (1). In  section IV, we  further  use  our  results to derive  first- 

order  parametrized  retrieval  formulas  that  estimate  rain  rates  and  their  uncertainties  from  measured  brightness 

temperatures. 

11. PRINCIPAL COMPONENT ANALYSIS  OF THE VERTICAL RAINFALL R 

The  passive-microwave T R "  database  represents  rain  profiles by stratifying  the  atmosphere into 14 

homogeneous  layers, of which 8 are  below  the  typical 4.5km freezing  level  in  the  tropics. This implies  that 

one  would  require  at  least  eight  variables to describe  the  liquid  rain  for  each  profile. A principal  value  analysis 

reveals  that this number  can be reduced.  Indeed,  calling R1, - - , R8 the  rain  in the first  eight 0.5-km layers 

above  the  surface  (numbered from the  surface  up),  one  can  compute  the  covariance  matrix of these  variables 

from  one's  database,  and  diagonalize  it : the  matrix of change of basis  specifies  which  eight  (new)  linear 

combinations of the  Ri's  are  mutually  uncorrelated,  and  the  associated  eigenvalues  determine  the  amount  of 

information  carried by each of the  new  variables : large  eigenvalues  indicate  a  correspondingly  large  variation 

in  the  associated  variable,  while  smaller  eigenvalues  indicate  that  the  value of the  corresponding  variable 

changes  relatively  little  over  the  whole  data. In practice, we calculated  the  covariance  matrix of log(Ri)  for 

the  TRMM  cloud-simulations  database,  then  diagonalized  it.  The  main  result  is  that  the  largest  eigenvalue is 

significantly  larger  than  the  remaining  seven,  and  its  eigenvector  is  very  close to R', N x! log Ri. The 

eigenvalues  were 

45 > 0.51 > 0.054 > 0.0024 > * . *  > 3.4. 
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suggesting  that  the  last  seven  eigenvariables 

could  be  considered  constant  without  incurring  a very  large  error  in  the  description of the  rain : the  vertical 

distribution of rain in the  atmosphere  could  thus be described to first  order  by  the  vertically  averaged  rain  rate 

R{ and  the  constant  values of the  means of Ri  , - - - , p 8 .  

rtical distribution - 
diagonalization 

[COV(Ri) = U.0iag.U') 

change of base R = U R 

1 
1 

Indeed,  when  reconstructed  using R{ and  the  mean  values !€{Ri} = 0.0635, !€{R;} = 0.0432, E{R>} = 
-0.003, E{Rk} = -0.0002, E{%} = -0.0001, %{R$} = 0.00004, E{Ri} = O.ooOo7, the  values for the 

rain  rates  were  within 24% of the  original  values.  Table  I  shows  the  individual  results  for each of the  eight 

layers,  and  figure 1 illustrates  the  case of the  near-surface  layer. 



. .  . . 

Fig. 1. Retrieved  sulface  layer R1 from 4 and Rh. 

In order to verify  that this high  correltaion  between  the  rain in the  various  layers is not  due to an artifact 

of  the  cloud  models  used  to  generate  the  TRMM  passive-microwave  database  in  the  first  place,  a  similar 

analysis was applied  to  actual  data  from  the  TRMM  radar. We analyzed  the  data  from  sixty  orbits  performed in 

September  1998.  The  natural  logarithms  of  the  rain-rate  estimates  of  the  TRMM  combined  algorithm ([ 11) for 

the  fourteen  250m-layers  between  750m  and  4km  were  used.  The  first  three  altitude  bins  near  the  surface  were 

ignored to avoid  surface  clutter  problems.  The  covariance  matrix was calculated  and  diagonalized.  The  results 

obtained  are  quite  similar  to  the  ones  found  for  the  passive  microwave  database  rain  rates.  For  convective 

rms deviation  relative  deviation 

(-1 (%I 
I R1 11 1.2675 I 12.99 1 
I R2 11 1.1499 I 11.27 I 
I R3 11 0.8296 I 8.35 I 
I R4 11  0.5173 I 6.03 I 
I R5 11 0.4205 I 5.39 I 

1 R7 I (  0.9812 I 13.07 I 

TABLE I 

RMS ermr on  the  rainrate  estimated for each layerfrom the  mean  rainrate R;, R; and 'E{R$}, , E{Ri} .  
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events,  the  eigenvalues  were 12.46 > 5.1 > 0.94 > 0.3 > ... > 1 .  The  coefficients of  the  eigenvector 

CiailOg(Ri) for  the  first  eigenvalue 12.46 all  verified 0.17 < ai < 0.3, quite  close  to  the  value N 0.267. 

Hence R\ is indeed  very  close  to  be  the  vertically  averaged  rainfall.  The  eigenvalues  in  the  stratiform  case 

were  similar  to  those  in  the  convective  case : 7.6 > 1.86 > 0.4 > 0.14 > ... > 8 The coefficients of 

the  eigenvector CiaiRi corresponding  to  the  first  eigenvalue  were  in  the  range 0.21 < ai < 0.29. Merging 

all  cases  together,  the  eigenvalues  were 11.8 > 0.43 > 0.14 > ... > 9 with  an  eigenvector Ciai Ri for 

the first  eigenvalue  satisfying 0.21 < (ai) < 0.29. As in  the  case  of  the  passive-microwave  database,  the  first 

eigenvalue is far bigger  than  the  remaining  ones,  although,  since  we  do  have 14 layers,  the  second  eigenvalue 

cannot  be  negligible.  It is particularly  interesting  to  note  that  for  the  convective,  stratiform,  or  all  merged 

events,  the  eigenvector xi biRi for this second  eigenvalue  always  had  the  form (bl , . . . , b7; - bg , - bg , . . . , - b14), 

with 0.13 < bl , ..., b6, b, ... b14 < 0.34 and 2 bg Gi 0.05. In other  words,  the  second  eigenvector  quantifies 

the  difference  between  the  rain  below 2.25km and  the  rain  above 2.75km. This is remarkably  similar  to  the 

case of  the T R "  cloud-simulations  database : indeed, (2) specifies  that  the  second  eigenvector  for  the  rain 

described in the  database is the  difference  between  the  rain  below 2km and  the  rain  above 2.5km. Figure 

4 
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Fig. 2. % versus exp(R{/fi), with N=8 for the database ( x )  and N=14 for the TRMM radar (a). 

2 shows  the  scatter  diagrams  of  the  first  two  eigenvectors,  in  the  case of  the TRMM passive-microwave 

database  and  of  some T R "  radar  data  obtained  during  ten  orbits  in  january 1999. In both  cases,  the  second 

eigenvector  varies  most  (and is therefore  most  descriptive)  for  the  moderate rain rates.  This  is  consistent  with 

the  fact  that  near-surface  evaporation  can be significant  especially  under  stratiform rain, a  process  which is 

best  quantified  by the difference  between  the  rain  aloft  and  the  rain  near  the  surface. In summary, our  principal 

component  analysis  confirms  that  the T R "  passive-microwave  database  is  consistent  with  measurements 

in the tropics,  and  suggests  that,  in  the  tropics,  one  should  be  able  to  describe  the  vertical  distribution of  rain 
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. using  two  variables  only : the  mean  rainrate  (the  first  eigenvector)  and  the  difference  between  the  rain  in 

upper  and  lower  layers. 

111. CONDITIONAL COVARIANCES OF R AND Tb 

Because it is  almost  always  impossible  to  find an exact  match  for  a  set  of  measured  radiances  in  one's 

database,  one  must  quantify  the  conditional  covariances of  the  variables  in  the  database  in  order  to  estimate 

the  uncertainty  in  any  rain  retrieval  based  on  the  database. In the  previous  section,  in  the  course  of  the  prin- 

cipal  component  analysis,  we verified  that  the joint  behavior of  the T R "  database  rain  rates  at  different 

heights is almost  identical to that of the  (independent)  estimates  of  the TR" radar.  Before  proceeding  to 

the  calculation  of  the  conditional  covariances,  we  must  check  that  the T R "  database  brightness  tempera- 

tures are also  consistent  with  the TRMM observations,  which  we  did  by  analyzing  the TMI data  obtained 

during six orbits  on  october  17  and  18,  1998.  For  each of  the  85.5GHz  channels,  we  had  113,007  rain  and 

2,521,922  clear-air  samples,  while  for  each  of  the  other  (lower  resolution)  channels  we  had  64,338  rain  and 

1,253,154  clear-air  samples.  Figure  3  shows  the  10.7GHz  V-pol  histograms  of  the  measurements  and  of  the 

r 
I 

0.3 

0.2 

P 
3 
f 

0.1 

10.7GHz V-POI 
Clear sir ( i m p u b e )  and rain (hislogram) 

0 

Fig. 3. Comparison of the 10.7GHz histograms of Tb. 

database  samples,  for  no-rain  events as well as for  rain  cells.  Since  the  database  does  not  contain  any  "clear 

air"  samples  per se, that  histogram  was  constructed  using  those  samples  for  which  the  rain  rate  did  not  ex- 

ceed  0.25 mm/hr anywhere  in  the  rainy  column.  This  explains the small  positive  bias  of the clear-air  database 

histogram  compared  with  the  measurements.  The  rain  samples  however  show  remarkable  agreement  with  the 

data. The  same  features  are  evident  in  the  histograms  for  the  10.7-V,  19.3-H,  19.3-V  and  22.2-V  channels. 

At  37GHz  (figure 4), the  database  contains  a  relatively  small  but  significant  number of rain  samples  with  low 

associated  brightness  temperatures  extending  well  below  the  clear-air  values,  while no measurements  fell in 



this  region.  This  feature  is  more  pronounced  in  the  85.5GHz  (figure 5), where  the  database  contains  no  rain 

samples  with  brightnesses  exceeding  the  clear-air  cases  while  the  measurements  actually peak in  that  region. 

This  could  be  an  indication that the  database  either  over-represents  high-scattering  events  or  that  scattering is 

over-estimated  in the radiative  transfer  calculations. A test  for  goodness  of  fit for the  37-V  data  reveals  that 

the  (approximately x2)  statistic 

c l4  ([#database  samplesli - [#meas~rements]i)~ 
> (9) 

i= 1 [#measurements] i 

computed  using  a  binning  into  2.5K-intervals  between  240K  and  270K,  has  a  value  of  36.4,  which  for  a x2 
variable  with 13 degrees of freedom  is  at  the 99.9lS‘ percentile.  While  this  value is not as  small as one may 

have liked,  it  is  not  unreasonable  given  that  the  very  large  sample  size  greatly  increases  the  penalty  for a 

mismatch  between  observations  and  simulated  temperatures,  the  mismatch  being  at  least  partly  due to the 

questionable  representativity of the  observations  themselves.  Thus,  on  the  whole,  the  database  temperatures 

are  not  flagrantly  inconsistent  with  the  observations. 

Figure 6 shows  the  conditional  means !E{ TblR!} of the  brightness  temperatures  given  the  “mean” PI. 
Except  for  the  10.7GHz  channels,  the  curves  are  almost  horizontal.  Figure 6 also  shows the conditional 

r.m.s.  deviations.  For  light  rain,  the  85.5GHz  uncertainties  are the highest,  approaching 60K, followed  by 

the  10.7GHz  H-pol  uncertainty  of  about  30K. As the  rain  increases  the  uncertainties  initially  drop,  then 

increase  again  once  the  rain  rate  exceeds  about 10 mm/hr. For  large  rain  rates,  the  85.5GHz  uncertainties 

climb  beyond 80 followed  closely  by  the  37GHz 0’s. This  is  undoubtedly  due to the  effects of scattering  from 

ice.  The  uncertainties  in  the  other  channels  remain  below  40K.  Table II and  figure  7,  showing  the  correlation 

coefficients of the  various  channels  given R‘, , complete  the  description  of  the  conditional  covariance. The high 
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Fig. 4. Comparison of the 37GHz Tb histograms. 
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Fig. 5. Comparison of the 85.5GHz Tb histograms. 

correlations  between  the  two  polarizations  at  each  frequency  are  not  surprising,  since  the  forward  radiative 

transfer  model  used  to  generate  the  database  did  not  account for any  polarization  effects  except  those  from  the 

surface.  Somewhat  more  surprising  is  the  sign of the  correlation  coefficient  between  19.3GHz  H-pol  and  both 

22GHz  V-pol and  37GHz  V-pol : for  low  rain  rates  the  correlation is close  to - 1,  but  it  becomes  positive  for  rain 

rates  above  about  2.5 rnm/hr and  approaches  +1  for  high  rain  rates.  More  significant is the  consistently  positive 

correlation  between  19.3GHz  V-pol  and  the  higher-frequency  channels,  and  its  relatively  weaker  correlation 

with  the  low-frequency  channels.  This  suggests  that,  in  the  TRMM  database,  both  19.3GHz  channels  are 

affected  by  scattering  in  the  cloud  model  used  even  at  very  low  rain  rates,  the  effect  being  more  significant  at 

V-polarization  than  at  H. 

To quantify  the  effect  of  the  ambiguities  in  the  database  on  the  direct  retrieval  of  the  rain  rates  from  mea- 

- 10.7 H _" 10.7 V 
10.3 H --- 103v 
P V  
BH 
S 7 V  - . - -6 M.v) 

1 
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22.2v 

0.89 .0.88 0.94 1 fig.7 fig.7  fig.7  fig.7 37v 

0.74 0.70  0.88 0.86 1 fig.7 

37H 

1 fig.7  fig.7  fig.7  fig.7 85.5H 

0.99 1 fig.7  fig.7  fig.7  fig.7 85.W 

0.80 0.75 1 fig.7 fig.7 fig.7 

TABLE II 

Correlation coeficients of given R - most  coe@ients ab not vary  signijicantly with R 

I 
'-6 0 6 10 

Rl' 

I 
-6 0 6 io  

R(' 
0 6 10 

R1' 

Fig. 7. Correlation coeficients for the passive channels given Ri . 

sured  brightness  temperatures,  we  proceed as before  and  start by  reducing  the  number  of  variables  required 

to  describe  the  radiances.  The  eigenvalues of  the  covariance  matrix  of  the  database  brightness  temperatures 

turn out  to  be 

5652 > 965 > 314.6 > 72.37 > 31.5 > 4.77 > 3.9 > 0.18 > 0.11 

with  corresponding  eigenvectors 
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Ti = 0 . 3 T i  + 0.17'; - 0.572'; - 0.35T,V, - 0.2T22 + O.45Tz +OAT& - 0.135T: - 0.17T&  (14) 

Ts I = -0.12'; - 0.2562'; + 0.42'; - 0.2T,V, - 0.72'22 + 0.412'; - 0.22'; + 0.052'; - 0.0072'&  (15) 

2': = 0.472'~-0 .82'~+0.12'~-0 .22'~+0.25T~~-0 .12'~+0.06T~-0 .012'~+0.0022'~  (16) 

Tj = -0.062': - O.OO72'; + 0.2$ + 0.0242'; - 0.4T22 - O S T z  + 0.7T; - 0.1T; + 0.022'; (17) 

Ti = 0 . 1 6 T ~ - 0 . 2 7 2 ' ~ - 0 . 3 7 2 ' ~ + 0 . 8 T , V , - 0 . 3 3 T ~ ~ + 0 . 0 4 2 ' ~ - 0 . 0 6 T ~ - 0 . 1 T ~ + 0 . 1 2 ' ~  (18) 

2'4 = 0.022'; - 0.052'& - 0.04T; + 0.14T; - 0.072'22 - 0.08T; + 0.062'; + 0.7TZ - 0.7T& (19) 

Once  again,  the  eigenvalues  decrease  quite  rapidly,  the  third  one  being  already  more  than an order  of  magni- 
. .  

0 

Fig. 8. Means of R given TI. 

tude  smaller  than  the  first.  One  can  therefore  quite  adequately  describe  the 9 passive  microwave  measurements 

using Ti (and, for additional  precision if  required, Ti)  and  the  means  of  the  remaining Ti's. Figure  8  shows 

the  conditional  mean  of  the Ri'S given Ti, and  figure 9 shows  the  conditional  standard  deviations. As the 

figures  show,  the  uncertainties  do  decrease  as  the rain itself  decreases,  but  they  increase  as  a  proportion  of 

the  rain  rate.  Indeed,  the  standard  deviations  are  consistently  around 55% for the higher  rain  rates,  then  rise 

to  about  65%  when  the  rain  rates  drop  to  about  30 mm/hr, and  continue  rising  as  the  rain  drops,  exceeding 

100% as  soon as the rain  rates  drop  below  20 mm/hr and  remaining  near  15 mm/hr for  the  lowest  rain  rates. 

Since  the  rain  rate  remains  positive,  much of  this  deviation  must  necessarily  lie  above  the  mean,  making  an 

over-estimation  of  the  rain  likely  if  the  joint  behavior  of  the  database  radiances is not  consistent  with  that of 
the  measurements. 
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Fig. 9. xm.s. variation of R given Ti. 

IV. ESTIMATION OF R USING MICROWAVE BRIGHTNESS TEMPERATURES Tb 

The  principal  component  analyses  allowed  us  to  reduce  the  number of variables  required to describe  the 

rain, as well  as  those  required to describe  the  measured  brightness  temperatures.  It is therefore  natural  to 

investigate  the  possibility of estimating  the  rain  from  the  measured  radiances  directly  using  the  reduced  set 

of variances,  without  having  to  consult  a  database  in  real  time.  Since  the  vertical  distribution  of  rain  can 

be  adequately  described  using  a  single  variable R; ,  the  mean  rainfall  value  in  the  atmosphere,  the  problem 

of estimating  the  rain  from  a  vector of measured  brightness  temperatures  can be reduced to estimating  the 

corresponding  value of Ri .  For  this  application, we chose  to  consider  a  higher-resolution scenario than  the 

previous case of T R " ,  and  used  a  cloud  model  simulation of a  hurricane  implemented  on a 3km  grid  with 

5 l-km rain  layers  and  assuming  a  look  angle of 52  degrees. We considered  9  channels : 10.7H,  10.7V,  19.3H, 

19.3V,  21.3V, 37H, 37V,  85.5H  and  85.5V. 

In practice,  it  would  be  simplest to use a  subset of all  available  microwave  channels to estimate R', , and  thus 

"distill"  the  information  contained  in  the  database  into  a  simple  parametrized  functional  relation.  Using an 

approach  similar to the  principal  component  analysis  above, we looked  for  the  "optimal" linear combination 

of  the  passive  channels  that  will  "best"  estimate  the  rain,  and  quantify  the  residual  ambiguity.  Because  the 

problem of finding  the  best  relation  between Ri and a  combination T' of brightness  temperatures I;: among 

10.7GHz,  19.3GHz,  21.3GHz,  37GHz  and  85.5GHz  is  a  priori  non-linear,  we  modify  it  slightly  by  trying 

to  maximize  the  correlation's  numerator E{R{ - T'}  keeping E {  T'2} constant.  This  in  effect  minimizes  the 

scatter  between T' and R;.  Once  the  coefficients of T' are  found,  one  can  easily  compute  the  mean  and 
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. variances of R' given  T',  and  thus  determine  the  inverse  relation  and  its  uncertainty. 

5 0 ,  I 

R1' 

Figure 10 shows  the  optimal  combination  Tipt  plotted  against  the  "mean" R', , 

along  with  selected  suboptimal  candidate T"s. The  r.m.s.  uncertainty  corresponding  to  Tipt is about 26.44%. 

As figure 10 shows,  the  best  combination  omitting  the  10.7GHz  channels  gives  a  flat  plot  with  a (T of  more 

than 50 %. The result  without  the  19.3GHz  channels is not  very  good  either. 

Using Tipt, the  rain-retrieval  results  are  rather  encouraging.  Figure 11  shows R', versus  Tipt.  There is 

manifestly little scatter around  the  diagonal.  Indeed,  the  r.m.s.  uncertainty  in  the Ri estimates  is  about  9%. 

Finally,  figure 12 shows  the  T&-reconstructed  near-surface  rain  rate R1 plotted  against  the  original R1, Ad  

figure 13 shows  the  results  of  the  reconstruction  for  each of the  remaining 4 layers R2, - , R5. Table III gives 

the  precisions of retrieved Ri in  each  layer.  These  results  are  quite  encouraging. 

V. CONCLUSION 

Our  study of the joint behavior of the  rain  in  a  horizontally  stratified  atmosphere  and  the  associated mi- 

crowave  radiances  shows  that  the  single  most  crucial  variable  characterizing  the  rain  profile is the  vertically 

averaged  rain  rate,  followed as a  distant  second by the  difference  between  the  high-altitude  sub-freezing-level 

rain  and the precipitation  closer  to  the  surface,  the  remaining  rain  eigen-variables  having  negligibly  small 

variances  implying  that  they  can  safely be considered  constant  (equal  to  their  respective  means).  The  mea- 
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Fig. 11. P1, retrievedfrom TLpt, versus  the  actual Pl. 

11 rms deviation (in rnrnlhr) I error (in %) I 
I R1 I I  f 4.35 I 41.1 1 
I R2 I I  f 3.25 I 29.8 I 
I R3 I I  f 2.12 

I R4 I I  f 2.27 

TABLE III 

Error in the  rainrate  calculated for each  layer using  the  mean  rainrate R{ estimatedfrom Tipt and  using E{R!!}, . - , 

surements  of  the  passive  microwave  channels  can  similarly  be  described  using  two  linear  combinations  of 

the  brightness  temperatures.  The  conditional  standard  deviation of  the  rain  rates  given  these  eigen-radiances 

is  a  nearly  linear  function  of  the  conditional  mean  rain  rate  when  the  latter is high,  equal  to  about  55%  of 

the  rain  rate,  but the proportion  rises  to  65%  when  the rain is around 30 mm/hr, and  exceeds 100% when 

the  rain  drops  below  20 mm/hr. The  study also shows  that  for  a  higher-resolution  situation  such as the  case 

of  an airborne  sensor,  the  vertical  rain  rates  can be adequately  estimated  using  five  of  the T R "  passive 

microwave  channels  and  an  associated  database  similar  to  that  used  for  TRMM,  with  an  r.m.s.  uncertainty 

(due  to  the  variations  accounted  for  in  the  model  database)  below  55%. 

ACKNOWLEDGMENTS 

Svetla  Veleva  is  gratefully  acknowledged  for  several  helpful  discussions.  This  work  was  performed  at  the 

Jet  Propulsion  Laboratory,  California  Institute of  Technology,  under  contract  with  the  National  Aeronautics 



14 

''IS . . . .. .. . . ,I .. r,; 

1 0 0  .. .. . .,* . .,' .' .. 

i 
50 

0 
0 

Fig. 12. R1, retrievedfrom TLp and E{R',}, * * ,E{%}, versus the actual 6. 

1 5 0  

1 0 0  

j 
50 

Fig. 13. Ri, retrievedfrom Tjpt and E{R',} ,- .-  ,E{R!!}, versus  the actual q's. 

and Space  Administration. 

REFERENCES 

[ 11 Z.S. Haddad, E.A. Smith, C.D. Kumerow, T. Iguchi,  M.R. Farrar, S.L. Durden, M. Alves and W.S. 

Olson, The TR" 'Day-1 radar-radiometer  combined  rain-pro$ling  algorithm, J. Met. S o c .  Japan, vol. 

75. no. 4, pp 799-809, 1997. 

[2] C.D. Kummerow, W.S. Olson, L. Giglio, A Simplified  Scheme for Obtaining  Precipitation  and  Vertical 



~~ 

1s 

Hydrometeor  Profiles from Passive  Microwave Sensors, EEE Tran.  geosc.  remote  sensing,  vol. 34. no. 

5, pp 1213-1232, September, 1996. 

[3] C.D.  Kummerow  and L. Giglio, A Passive  microwave Technique for Estimating  Rainfall  and  Vertical 

Structure  Information from Space.  Part I : Algorithm Description, J. Appl.  Meteo.,  vol. 33, pp 3-18, 

January, 1994. 

[4] C.D.  Kummerow  and L. Giglio, A  Passive  microwave Technique for Estimating  Rainfall  and  Vertical 

Structure  Information from Space.  Part II : Applications to SSMI Data, J.. Appl.  Meteo.,  vol. 33, pp 

19-34, J a ~ ~ a r y ,  1994. 

[5] S.-T. Soong and W.-K. Tao, A  numerical  study of  the vertical transport of  momentum  in a  tropical 

rainband, J. Atmos.  Sci.,  vol. 41. no. 5, pp 1049-  1061,  1984. 

[6] A. Mugnai,  E.A. Smith and  G.J.  Tripoli, Foundations for statistical-physical precipitation retrievalfrom 

passive micmwave frequencies. Part 11 : Emission-source and generalized  weighting-function properties 

of a time-dependent cloud-radiation model, J. Appl.  Meteo.,  vol. 32, pp 17-39,  1993. 

[7] E.A. Smith, A.  Mugnai, H.J. Cooper,  G.J.  Tripoli, X. Xiang, Foundations for statistical-physical pre- 

cipitation retrieval from passive microwave frequencies. Part I : Brightness-temperature properties of a 

time-dependent cloud-radiation model, J. Appl.  Meteo.,  vol. 31, pp 506-531,  1992. 

[8] J. Tesmer  and T.T. Wilheit, An  Improved Microwave  Radiative  Transfer Model for Tropical Oceanic 

Precipitation, J. Atmos.  Sciences,  vol. 55, pp 1674-1688,  1998. 


	37v
	fig.7
	fig.7

	fig.7
	fig.7


	fig.7
	fig.7
	fig.7

	85.W
	fig.7
	fig.7
	fig.7
	fig.7



	85.5H
	fig.7
	fig.7
	fig.7


	fig.7


